If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+340t-1360=0
a = 4.9; b = 340; c = -1360;
Δ = b2-4ac
Δ = 3402-4·4.9·(-1360)
Δ = 142256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{142256}=\sqrt{16*8891}=\sqrt{16}*\sqrt{8891}=4\sqrt{8891}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(340)-4\sqrt{8891}}{2*4.9}=\frac{-340-4\sqrt{8891}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(340)+4\sqrt{8891}}{2*4.9}=\frac{-340+4\sqrt{8891}}{9.8} $
| 4x(x+1)=-2 | | 4(n-1)=2(n+4) | | 2(4x-5+2=0 | | 4x(x+1)=2 | | -1/5=3y+2/5 | | 2x+x+2x+10=70 | | 9g=8g−10 | | 5+3/4f=-5 | | 32x+7+33x+3=180 | | 5n-5=10+n | | 5-2v=-16+5v | | -3v+23=2(v-1) | | -3x+8=-3x+6-1/2(2x-4) | | N=10-x | | 3x+11=7x-3 | | 80+2x+x=180 | | −1/3+2/z=−5/6 | | 8b-8-3b=17 | | -8(2x-4)=9(4-2x) | | -9=d+5÷3 | | -20-4(x-3)=4x | | 18+4.5p=6p=12 | | 1+7n=-8+n | | -5=-19-2x | | 0.75p-2=0.25p+4 | | 5w+30=11w | | 3x^+7=28 | | 2x+16=21 | | 3+5k=8(4-9k) | | 3y-1=2y+3 | | 24+6x=14x | | m-6=-14-3m |